

Air quality modeling with WRF-Chem v3.8.1 over the Sultanate of Oman

NO Concentration [ppt]

Siham Al Hadhrami¹, Douglas Lowe², Luke Conibear³, James Brooks¹, Frank Drewnick⁴ and Gordon McFiggans¹

¹School of Earth & Environmental Sciences, University of Manchester, UK. ²Research IT, IT Services, University of Manchester.

³Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK.

⁴Max-Planck Institute for Chemistry Mainz, Germany.

Presented by: Dr Siham Al Hadhrami

10th of January 2022

+ Outline

- Summertime Air Quality over the Arabian Peninsula
- WRF-Chem
- Simulations Validations
- Main Findings
- Conclusion & Recommendations

Air Quality

- Ambient air pollution is a major environmental health risk.
- According to World Health Organization (WHO),
 - In 2019, 99% of the world population was living in places where the WHO air quality guidelines levels were not met.
 - ambient air pollution had been linked to the death of approximately 4.2 million premature in 2016.
 - Particulate matter (PM), ozone (O₃), nitrogen dioxide (NO₂) and sulphur dioxide (SO₂) are the pollutants with the strongest evidence for public health concern.

Summertime Air Quality over the Arabian Peninsula

WRF-Chem

- WRF-Chem is the Weather Research and Forecasting (WRF) model <u>coupled</u> with Chemistry.
- The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology.

* Study Region

MODEL VALIDATION DATASET

Local Aerosol Optical Depth Distribution

+

Regional Aerosol Optical Depth Distribution

+

Regional Air Pollutants Distribution

Ozone: AQABA vs Model

30

hour

Regional chemistry over the Arabian Peninsula

- The modelled NO_x mixing ratio ranged from 100 pptv to several parts per billion by volume.
 - This can be related to multiple local anthropogenic sources such as onand offshore petrochemical processing, highly urbanized cities and passing ships
- The modelled **NMVOC** mixing ratio ranged from 1 ppb to several parts per billion by volume.
 - The Arabian Sea shows the <u>lowest</u> NMVOC mixing ratio; while the Oman Sea and Arabian Gulf have the <u>highest</u> mixing ratios, due to the significant presence of the oil and gas industries in these locations.

The average simulated maximum daily 1-hour mean NO_2

The average simulated maximum daily 8-hour mean O_3

The average simulated daily mean $PM_{2.5}$

The estimated short-term premature mortality

Conclusion & Recommendations

- WRF-Chem simulations were significantly influenced by the global model data used as boundary conditions
 - data taken from Community Atmosphere Model with Chemistry (CAM-chem) simulations showed the highest fidelity.
- Discrepancies in the results between WRF-Chem and the AQABA-ship campaign data are likely most strongly influenced by biases in the anthropogenic emission inventory rather than model boundary conditions.
- The model-measurement uncertainty leads to uncertainties in health impacts, which will also be affected to some degree by model resolution.
- Improved evaluation of air quality and its impacts on health would strongly benefit from the development of a national emission inventory and provision of access to available ambient air quality data from monitoring stations.